REACTIONS OF AMIDINES WITH OXALYL CHLORIDE. II

L. I. Samarai, V. A. Bondar, and G. I. Derkach

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 4, No. 6, pp. 1099-1101, 1968 UDC 547.783'856.1

Unsubstituted, N-alkyl(aryl)- and N-chloroamidines react with oxalyl chloride to form imidazolidine-4, 5-diones. The hydrochlorides of 1aryl-2-alkyl(aryl)imidazolidine-4, 5-diones decompose thermally to give N-arylimidoyl isocyanates which change immediately to 4quinazolones.

Further studies of the reactions of N-alkyl(aryl) amidines with oxalyl chloride have shown that the initial products of the reactions are the imidazolidine-4,5-dione hydrochlorides and not the imidovloxamovl chlorides reported earlier [1].

$$RC \begin{cases} \frac{NR'}{NH_2} + (COCI)_2 & \frac{R'}{-HCI} & RC \begin{cases} \frac{R'}{N-C=0} \\ N-C=0 \\ VI-XV \end{cases}$$

Unsubstituted amidines react similarly with oxalyl chloride and give the hydrochlorides VI and XIII. The same compounds are obtained from the reaction between oxalyl chloride and N-chloroamidines.

$$RC(=NH)NH_{2} = \frac{+(COCI)_{2}}{-HCI} = R - C \times \frac{H}{N - C = 0} = \frac{+(COCI)_{2}}{-CI_{2}} = RC(=NCI)NH_{2}$$

Hydrochlorides of the imidazoline-4,5-diones VI-XV are colorless crystalline materials, many of which are sparingly soluble in the usual organic solvents. Hydrochlorides of the 1-aryl-2-alkyl(aryl)imidazolidine-4,5-diones decompose on heating to their melting points with the evolution of HCl and CO and are converted into 4-quinazolones (method A, Table 1). The decomposition of the 1-aryl-2-alkyl(aryl)imidazolidine-4,5-diones takes place, apparently, with the intermediate formation of the imidoyl isocyanates [1]. In separate experiments with N-arylimidoyl chlorides and silver cyanate, only the 4-quinazolones were obtained. Intermediate products of these reactions, undoubtedly, were the imidoyl isocyanates [3], which confirms the correctness of the proposed reaction sequence.

Under the same conditions, the hydrochloride of $1-(\alpha-naphthyl)-2-phenylimidazolidine-4,5-dione gives$ 2-phenyl-7, 8-benzo-4-quinazolone (V). It has not as yet been possible to isolate individual compounds from the thermal decomposition of 1-alkyl-2-alkyl-(aryl)imidazoline-4,5-diones.

EXPERIMENTAL

Imidazolidine-4, 5-diones (VI-XV, Table 2) were obtained from the corresponding amidines and oxalyl chloride by the method previously described [1]. Compounds VI and XIII did not show depressions

Table 1 4-Quinazolones

Com- pound	Name	Method of prepa- ration	Mp, °C (crystal solvent)	Empirical formula	Found, %		Calc., %		Yield, %
		Z o E			С	н	С	Н	Υie
I	2-Trichlorometh- yl-6-methoxy-4- quinazolone	A	198-200 (methanol + + water)	C ₁₀ H ₇ Cl ₃ N ₂ O ₂	41.29	2.43	40.91	2.40	92
H	2-Trichlorometh- yl-6-chloro-4- quinazolone	A	243—244 (acetone + + water)	C ₉ H ₄ Cl ₄ N ₂ O	36.48	1,34	36.27	1.35	90
Ш	2-Phenyl-4-quin- azolone	A, B	236—237** (benzene)	$C_{14}H_{10}N_{2}O$	_	-	_	_	90*
IV	2-Phenyl-6-meth- yl-4-quinazo- lone	В	255—257 (benzene)	C ₁₅ H ₁₂ N ₂ O	76.13	5.20	76.26	5.12	30
V	2-Phenyl-7,8- benzo-4-quin- azolone	A, B	311—313 (nitromethane)	C ₁₈ H ₁₂ N ₂ O	79.20	4.52	79,39	4.43	79*

^{*}Yields are based on compounds obtained by method A. **According to the literature [2], mp 235-236° C.

^{*}For part I, see [1].

Compound	R	R'	Mp, °C (crystal solvent)	Empirical formula	Found, % Cl	Calc., % Cl	Yield, %
VI	CCl ₃	Н	194 (decomp.) ^{2*}	C ₄ H ₂ Cl ₄ N ₂ O ₂	56.20	56.30	821*
VII	CCI ₃	СН₃	156158 (benzene + + petroleum ether)	C ₅ H ₄ Cl ₄ N ₂ O ₂	53.01	53.33	72
VIII	CCI3	n-C₄H ₉	107—109 CC1 ₄	C ₈ H ₁₀ Cl ₄ N ₂ O ₂	45.88	46.04	70
lΧ	CCI ₃	C ₆ H ₅ CH ₂ CH ₂	151—152 CCl ₄	C ₁₂ H ₁₀ Cl ₄ N ₂ O ₂	39.58	39.83	87
X	CC1 ₃	C ₆ H ₅	188 (decomp.) ^{3*}	_	_		99
ΧI	CC1 ₃	p-ClC ₆ H ₄	191 (decomp.) ^{2*}	$C_{10}H_5Cl_5N_2O_2$	49.39	48.91	93
XII	CC1 ₃	p-CH ₃ OC ₆ H ₄	185 (decomp.) ^{2*}	C ₁₁ H ₈ Cl ₄ N ₂ O ₃	39.99	39.61	94
XIII	C ₆ H ₅	Н	192 (decomp.)2*	C ₉ H ₇ ClN ₂ O ₂	17.03	16.84	604*
XIV	C ₆ H ₅	C ₆ H ₅	177 (decomp.) ^{3*}	_	_		99
XV	C ₆ H ₅	α-C ₁₀ H ₇	174 (decomp.) ^{2*}	C ₁₉ H ₁₃ ClN ₂ O ₂	10.45	10.53	89

Table 2
Imidazolidine-4,5-diones

in mixed melting points with those obtained from the reaction between the N-chloroamidines and oxalyl chloride.

4-Quinazolones (I-V). A. The 4-quinazolones were obtained by thermal decomposition of the hydrochlorides of 1-aryl-2-alkyl(aryl)-imidazolidine-4, 5-diones [1]. B. To a solution of 0.05 mole of the N-arylimidazoyl chloride in 80 ml of anhydrous benzene was added 7.5 g (0.05 mole) of silver cyanate. The mixture was stirred vigorously for 3-4 hr. After cooling the reaction mixture, the solid was filtered off with suction. The 4-quinazolone was extracted from the residue with benzene. Yield 20-30%. Compounds III and V, obtained by method A, did not depress the melting points of samples obtained using method B.

REFERENCES

- 1. L. I. Samarai, V. A. Bondar, and G. I. Der-kach, ZhOrKh, 1, 2004, 1965.
- 2. M. M. Endicott, E. Wick, M. L. Mercury, and M. L. Sherrill, J. Am. Chem. Soc., 68, 1299, 1946.
- 3. A. J. Hill and W. M. Degnan, J. Am. Chem. Soc., 62, 1595, 1940.
- 6 September 1966

Institute of Organic Chemistry AS UKrSSR, Kiev

^{1*}Yield from corresponding N-chloroamidine, 93%. 2*The compound was purified by washing with benzene, CCl₄, and benzene and ether. 3*See [1]. 4*Yield from corresponding N-chloroamidine, 82%.