REACTIONS OF AMIDINES WITH OXALYL CHLORIDE. II ## L. I. Samarai, V. A. Bondar, and G. I. Derkach Khimiya Geterotsiklicheskikh Soedinenii, Vol. 4, No. 6, pp. 1099-1101, 1968 UDC 547.783'856.1 Unsubstituted, N-alkyl(aryl)- and N-chloroamidines react with oxalyl chloride to form imidazolidine-4, 5-diones. The hydrochlorides of 1aryl-2-alkyl(aryl)imidazolidine-4, 5-diones decompose thermally to give N-arylimidoyl isocyanates which change immediately to 4quinazolones. Further studies of the reactions of N-alkyl(aryl) amidines with oxalyl chloride have shown that the initial products of the reactions are the imidazolidine-4,5-dione hydrochlorides and not the imidovloxamovl chlorides reported earlier [1]. $$RC \begin{cases} \frac{NR'}{NH_2} + (COCI)_2 & \frac{R'}{-HCI} & RC \begin{cases} \frac{R'}{N-C=0} \\ N-C=0 \\ VI-XV \end{cases}$$ Unsubstituted amidines react similarly with oxalyl chloride and give the hydrochlorides VI and XIII. The same compounds are obtained from the reaction between oxalyl chloride and N-chloroamidines. $$RC(=NH)NH_{2} = \frac{+(COCI)_{2}}{-HCI} = R - C \times \frac{H}{N - C = 0} = \frac{+(COCI)_{2}}{-CI_{2}} = RC(=NCI)NH_{2}$$ Hydrochlorides of the imidazoline-4,5-diones VI-XV are colorless crystalline materials, many of which are sparingly soluble in the usual organic solvents. Hydrochlorides of the 1-aryl-2-alkyl(aryl)imidazolidine-4,5-diones decompose on heating to their melting points with the evolution of HCl and CO and are converted into 4-quinazolones (method A, Table 1). The decomposition of the 1-aryl-2-alkyl(aryl)imidazolidine-4,5-diones takes place, apparently, with the intermediate formation of the imidoyl isocyanates [1]. In separate experiments with N-arylimidoyl chlorides and silver cyanate, only the 4-quinazolones were obtained. Intermediate products of these reactions, undoubtedly, were the imidoyl isocyanates [3], which confirms the correctness of the proposed reaction sequence. Under the same conditions, the hydrochloride of $1-(\alpha-naphthyl)-2-phenylimidazolidine-4,5-dione gives$ 2-phenyl-7, 8-benzo-4-quinazolone (V). It has not as yet been possible to isolate individual compounds from the thermal decomposition of 1-alkyl-2-alkyl-(aryl)imidazoline-4,5-diones. ## EXPERIMENTAL Imidazolidine-4, 5-diones (VI-XV, Table 2) were obtained from the corresponding amidines and oxalyl chloride by the method previously described [1]. Compounds VI and XIII did not show depressions Table 1 4-Quinazolones | Com-
pound | Name | Method
of prepa-
ration | Mp, °C
(crystal solvent) | Empirical
formula | Found, % | | Calc., % | | Yield, % | |---------------|--|-------------------------------|------------------------------------|--|----------|------|----------|------|----------| | | | Z o E | | | С | н | С | Н | Υie | | I | 2-Trichlorometh-
yl-6-methoxy-4-
quinazolone | A | 198-200
(methanol +
+ water) | C ₁₀ H ₇ Cl ₃ N ₂ O ₂ | 41.29 | 2.43 | 40.91 | 2.40 | 92 | | H | 2-Trichlorometh-
yl-6-chloro-4-
quinazolone | A | 243—244
(acetone +
+ water) | C ₉ H ₄ Cl ₄ N ₂ O | 36.48 | 1,34 | 36.27 | 1.35 | 90 | | Ш | 2-Phenyl-4-quin-
azolone | A, B | 236—237**
(benzene) | $C_{14}H_{10}N_{2}O$ | _ | - | _ | _ | 90* | | IV | 2-Phenyl-6-meth-
yl-4-quinazo-
lone | В | 255—257
(benzene) | C ₁₅ H ₁₂ N ₂ O | 76.13 | 5.20 | 76.26 | 5.12 | 30 | | V | 2-Phenyl-7,8-
benzo-4-quin-
azolone | A, B | 311—313
(nitromethane) | C ₁₈ H ₁₂ N ₂ O | 79.20 | 4.52 | 79,39 | 4.43 | 79* | ^{*}Yields are based on compounds obtained by method A. **According to the literature [2], mp 235-236° C. ^{*}For part I, see [1]. | Compound | R | R' | Mp, °C
(crystal solvent) | Empirical formula | Found, %
Cl | Calc., % Cl | Yield,
% | |----------|-------------------------------|---|--|---|----------------|-------------|-------------| | VI | CCl ₃ | Н | 194 (decomp.) ^{2*} | C ₄ H ₂ Cl ₄ N ₂ O ₂ | 56.20 | 56.30 | 821* | | VII | CCI ₃ | СН₃ | 156158
(benzene +
+ petroleum ether) | C ₅ H ₄ Cl ₄ N ₂ O ₂ | 53.01 | 53.33 | 72 | | VIII | CCI3 | n-C₄H ₉ | 107—109
CC1 ₄ | C ₈ H ₁₀ Cl ₄ N ₂ O ₂ | 45.88 | 46.04 | 70 | | lΧ | CCI ₃ | C ₆ H ₅ CH ₂ CH ₂ | 151—152
CCl ₄ | C ₁₂ H ₁₀ Cl ₄ N ₂ O ₂ | 39.58 | 39.83 | 87 | | X | CC1 ₃ | C ₆ H ₅ | 188 (decomp.) ^{3*} | _ | _ | | 99 | | ΧI | CC1 ₃ | p-ClC ₆ H ₄ | 191 (decomp.) ^{2*} | $C_{10}H_5Cl_5N_2O_2$ | 49.39 | 48.91 | 93 | | XII | CC1 ₃ | p-CH ₃ OC ₆ H ₄ | 185 (decomp.) ^{2*} | C ₁₁ H ₈ Cl ₄ N ₂ O ₃ | 39.99 | 39.61 | 94 | | XIII | C ₆ H ₅ | Н | 192 (decomp.)2* | C ₉ H ₇ ClN ₂ O ₂ | 17.03 | 16.84 | 604* | | XIV | C ₆ H ₅ | C ₆ H ₅ | 177 (decomp.) ^{3*} | _ | _ | | 99 | | XV | C ₆ H ₅ | α-C ₁₀ H ₇ | 174 (decomp.) ^{2*} | C ₁₉ H ₁₃ ClN ₂ O ₂ | 10.45 | 10.53 | 89 | Table 2 Imidazolidine-4,5-diones in mixed melting points with those obtained from the reaction between the N-chloroamidines and oxalyl chloride. 4-Quinazolones (I-V). A. The 4-quinazolones were obtained by thermal decomposition of the hydrochlorides of 1-aryl-2-alkyl(aryl)-imidazolidine-4, 5-diones [1]. B. To a solution of 0.05 mole of the N-arylimidazoyl chloride in 80 ml of anhydrous benzene was added 7.5 g (0.05 mole) of silver cyanate. The mixture was stirred vigorously for 3-4 hr. After cooling the reaction mixture, the solid was filtered off with suction. The 4-quinazolone was extracted from the residue with benzene. Yield 20-30%. Compounds III and V, obtained by method A, did not depress the melting points of samples obtained using method B. ## REFERENCES - 1. L. I. Samarai, V. A. Bondar, and G. I. Der-kach, ZhOrKh, 1, 2004, 1965. - 2. M. M. Endicott, E. Wick, M. L. Mercury, and M. L. Sherrill, J. Am. Chem. Soc., 68, 1299, 1946. - 3. A. J. Hill and W. M. Degnan, J. Am. Chem. Soc., 62, 1595, 1940. - 6 September 1966 Institute of Organic Chemistry AS UKrSSR, Kiev ^{1*}Yield from corresponding N-chloroamidine, 93%. 2*The compound was purified by washing with benzene, CCl₄, and benzene and ether. 3*See [1]. 4*Yield from corresponding N-chloroamidine, 82%.